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Convenient synthesis of 4H-1,2,4-triazole-3-thiols using
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Abstract—We report here the convenient synthesis of 4H-1,2,4-triazole-3-thiols using di-2-pyridyl-thionocarbonate as the thiocar-
bonyl transfer reagent. This method is suitable for microplate parallel synthesis and produces samples in screening-ready condition.
It uses two large sets of building-blocks: amines and hydrazides.
� 2007 Elsevier Ltd. All rights reserved.
Five-membered rings are highly prevalent in the
pharmacopoeia and more generally in collections of bio-
active compounds. Since long we have been interested in
the parallel synthesis of five-membered heterocycles.1,2

Not only is ring closure usually entropically favoured,
but also they are compact scaffold for the distribution
of pharmacophore elements in space. Amongst five-
membered rings, 1,2,4-triazole-3-thiols and derivatives
(series A–E in Fig. 1) appear pharmacologically relevant
since they are found in many bioactive compounds.

For example, D and E derivatives have been developed
as memory enhancers, or sphingomyelinase inhibitors.3,4

Recently CXCR2 antagonists displaying a triazolethiol
moiety have been described.5 Such heterocycles have
also been developed as inhibitors of the large family of
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Figure 1. Markush formulas of 1,2,4-triazole-3-thiols derivatives.
Matrix-MetalloProteinases (MMPs) and A Disintegrin
and Metallo Domain (ADAMs) enzymes.6 S-alkylated
derivatives have been shown to antagonize Angiotensin
II receptors (AT-1) or more recently to inhibit cyclo-
oxygenase-2 (COX-2).7,8 Other compounds in these
series display anti-bacterial properties.9,10

More generally a survey in MDDR database11 retrieves
245 molecules in series A–E, among which 63 are free-
thiol derivatives (series A and B).

Suritozole and mitratapide (Fig. 2)12 are two examples
of bioactive 1,2,4-triazole-3-thiols.

Among the compounds presented in Figure 1, we were
interested in type B compounds because they display
structures complementary to those of linear carbox-
amides. Indeed, whereas the energetically favoured con-
formation of amide is the trans conformation, the
substituents brought by the parent acid and amine in
4H-1,2,4-triazole-3-thiols are in a cis configuration rela-
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Figure 2. Structures of suritozole (1) and mitratapide (2).
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Scheme 1. Reaction and conditions: (a) (i) Thiocarbonyl transfer
reagent 0.25 M in DMF (1.05 equiv), amine (free base) 0.1 M in DMF
(1 equiv), 55 �C, 1.5 h (ii) hydrazide (free base), 0.1 M in DMF
(1 equiv) 55 �C, 1.5 h, solvent evaporation; (b) KOH 0.1 M in H2O/
EtOH (40/60) 85 �C, 5 h.
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tive to the NC bond. Thus from a diversity viewpoint,
using the same parent reagents, series B populates a
region of space complementary to that of amides (Fig. 3).

4H-1,2,4-Triazole-3-thiols can be prepared from two
reagent sets and in the end display three pharmacophore
motives: two from the reagents and a thiol function.
The general synthesis procedures of 4H-1,2,4-triazole-
3-thiols proceed through the preparation of the
corresponding acylthiosemicarbazides that are further
cyclized under basic conditions (Fig. 3). Interestingly
these intermediates can be used for the synthesis of other
heterocycles.13,14 Acylthiosemicarbazide intermediates
are usually obtained by acylation of 2-substituted thio-
semicarbazates with acid chlorides (Fig. 3, route 1), or
by reaction of hydrazides with the corresponding
thioisocyanate (Fig. 3, route 2).15,16 Route 2 uses
hydrazides that can easily be obtained from the corre-
sponding carboxylic acid in two steps using tert-butyl-
carbazate, if they are not commercially available.17 An
analysis of commercially available reagents showed that
amines and hydrazides were more represented in
databases than acid chlorides or thiosemicarbazates.18

We thus developed a procedure following Route 2
(Fig. 3).

The synthesis of isothiocyanates from amines requires
the use of thiocarbonyl transfer reagents such as carbon
disulfide. Nevertheless, toxicity of CS2 to human and
environment is a real problem.19 Moreover, its physical
properties make it unusable in automated chemistry.20

N,N 0-Thiocarbonyldiimidazole (TCDI) is a usual
surrogate of CS2.21 More recently, di-2-pyridylthiono-
carbonate (DPT) and its equivalent 1,l 0-thiocarbonyl-
2,2 0-pyridone were also used.22,23 We were interested
in evaluating the use of TCDI or DPT as thiocarbonyl
transfer reagents in the synthesis of our target com-
pounds. In particular our goal was to develop a protocol
for both microplate synthesis (15 lmol) and larger scale
synthesis, which would not require the purification of
the intermediate isothiocyanate.24,25
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Figure 3. Routes to access 4H-1,2,4-triazole-3-thiols, mimicks of
cis-amides.
The synthesis of 4H-1,2,4-triazole-3-thiols proceeds
in two steps.26 As shown in Scheme 1, the first step
consists in the in situ formation of the isothiocyanate
from the amine followed by reaction with the required
hydrazide.27

Inversion of the sequence of introduction of reagents in
the first step yielded 3H-1,3,4-oxadiazole-2-thione
quantitatively (compound 5 in Fig. 4). Another frequent
by-product is the symmetrical thiourea from the amine
(compound 6, Fig. 4).28

Table 1 compares results obtained using either TCDI or
DPT. Under the same conditions, TCDI proved to be
less efficient than DPT. Also, in our hands, the use of
TCDI was hampered by a hardly preventable decompo-
sition that makes difficult the measure of stoichiometric
amounts. Furthermore, TCDI produces imidazole as a
by-product (pKa 6.95) whereas DPT produces 2-pyri-
done (pKa 0.75). Thus conditions using DPT are milder
and pyridone by-product can be more easily removed in
water than imidazole.22

Cyclization of the acylthiosemicarbazide into 1,2,4-tri-
azole-3-thiones proceeds under basic conditions. The use
of bases such as carbonate, hydrogenocarbonate and
hydroxide has been reported.5,8,29 Solubility in DMSO
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Figure 4. Structures of potential by-products.

Table 1. Comparison of the use of TCDI or DPT at 5 lmol scalea
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TCDI 74 (26) 72 (28)
DPT 91 (9) 99 (1)

a R2-NH2 used was 4-chloro-phenethylamine.
b Relative proportions of 3 and 6 evaluated in 215 nm HPLC-MS.



Table 2. Scope of the amine set31
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a 300 lmol scale; isolated yield of acyl-thiosemicarbazide; purity was assessed by HPLC at 215 nm.
b Isolated yield of the cyclization step; purity was assessed by HPLC at 215 nm.
c Purified by thick layer chromatography.
d Cyclized with 2 equiv of KOH and purified by extraction.
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of final compounds is critical for high-throughput
screening; we evaluated the solubility of sodium and
potassium salts of our final thiols.30 In this context, we
found that potassium salts were more soluble than their
sodium counterparts.31 We thus decided to use potas-
sium hydroxide for the cyclization step.

Using this optimized protocol, we evaluated the scopes
of both reagent sets at a larger scale.32 Various amines
were evaluated for their ability to form the acylthio-
semicarbazide and the ability of the latter to undergo
cyclization (Table 2).33 Benzylamines and phenethyl-
amines were converted quantitatively and the resulting
acylthiosemicarbazides were obtained in very good
yields (compounds 12a, 13a, 7a). Interestingly anilines
gave heterogenous results depending on the substituents
Table 3. Scope of the hydrazide set31
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(compounds 10a or 11a). Unexpectedly, a-substituted
primary amines gave acylthiosemicarbazides in only
moderate yields and the symmetrical thiourea by-prod-
uct was produced in high proportions.

Cyclization efficiency was also a function of the amine
precursor. Steric hindrance at the amine function seems
critical at this step. Good to excellent yields were
obtained for compounds 7b, 11b–14b (72–90%).

Cyclization of 8a–10a into 8b–10b was slower than for
other acylthiosemicarbazides and addition of higher
amounts of KOH was required to complete the reaction.

Various hydrazides such as aliphatic, benzylic or hetero-
aromatic were also tested (Table 3). They all gave target
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products in good yield. Interestingly, tert-butylcarbazate
gave good results and allows the synthesis of
5-thioxo-1,2,4-triazolidin-3-one 16b. Synthesis of such
compounds is only poorly described and uses either
semicarbazide and thioisocyanate or thiobisureas and
carbamoylthiosemicarbazide.34,35

At last, compound 12b, a prototypal example of these
series, was found to have a measured pKa of 7.95.36 This
value is in the range of published pKas.37

In conclusion, we developed a facile synthesis of 4H-
1,2,4-triazole-3-thiols in two steps that is suitable for
both one-pot parallel synthesis in microplates and larger
scale synthesis. This method can be used for various sets
of hydrazides including tert-butylcarbazate. The most
reactive amines are benzylamines, phenethylamines
and linear alkylamines but this method can also be used
with anilines and a-substituted amines.
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